How to cite item

Modulation of A2a receptor antagonist on D2 receptor internalization and ERK phosphorylation

  
@article{APS6876,
	author = {Li Huang and Dong-dong Wu and Lei Zhang and Lin-yin Feng},
	title = {Modulation of A2a receptor antagonist on D2 receptor internalization and ERK phosphorylation},
	journal = {Acta Pharmacologica Sinica},
	volume = {34},
	number = {10},
	year = {2016},
	keywords = {},
	abstract = {Aim: To explore the effects of heterodimerization of D2 receptor/A2a receptor (D2R/A2aR) on D2R internalization and D2R downstream signaling in primary cultured striatal neurons and HEK293 cells co-expressing A2aR and D2R in vitro.
Methods: Primary cultured rat striatal neurons and HEK293 cells co-expressing A2aR and D2R were treated with A2aR- or D2R-specific agonists. D2R internalization was detected using a biotinylation assay and confocal microscopy. ERK, Src kinase and β-arrestin were measured using Western blotting. The interaction between A2aR and D2R was detected using bioluminescence resonance energy transfer (BRET) and immunoprecipitation.
Results: D2R and A2aR were co-localized and formed complexes in striatal neurons, while both the receptors formed heterodimers in the HEK293 cells. In striatal neurons and the HEK293 cells, the D2R agonist quinpirole (1 μmol/L) marked increased Src phosphorylation and β-arrestin recruitment, thereby D2R internalization. Co-treatment with the A2aR antagonist ZM241385 (100 nmol/L) significantly attenuated these D2R-mediated changes. Furthermore, both ZM241385 (100 nmol/L) and the specific Src kinase inhibitor PP2 (5 μmol/L) blocked D2R-mediated ERK phosphorylation. Moreover, expression of the mutant β-arrestin (319-418) significantly attenuated D2R-mediated ERK phosphorylation in HEK293 cells expressing both D2R and A2aR, but not in those expressing D2R alone.
Conclusion: A2aR antagonist ZM241385 significantly attenuates D2R internalization and D2R-mediated ERK phosphorylation in striatal neurons, involving Src kinase and β-arrestin. Thus, A2aR/D2R heterodimerization plays important roles in D2R downstream signaling.},
	issn = {1745-7254},	url = {http://www.chinaphar.com/article/view/6876}
}