@article{APS5092,
author = {Ping Liu and Ji-zhou Xiang and Lei Zhao and Lei Yang and Ben-rong Hu and Qin Fu},
title = {Effect of β2-adrenergic agonist clenbuterol on ischemia/reperfusion injury in isolated rat hearts and cardiomyocyte apoptosis induced by hydrogen peroxide},
journal = {Acta Pharmacologica Sinica},
volume = {29},
number = {6},
year = {2016},
keywords = {},
abstract = {Aim: To observe the effect of β2-adrenergic agonist clenbuterol on ischemia/reperfusion (I/R) injury in isolated rat hearts and hydrogen peroxide (H2O2)-induced cardiomyocyte apoptosis.
Methods: Isolated rat hearts were subjected to 30 min global ischemia and 60 min reperfusion on a Langendorff apparatus. Cardiac function was evaluated by heart rate, left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure, maximal rise rate of left ventricular pressure (+dp/dtmax), and the coronary effluent (CF). Lactate dehydrogenase (LDH) in the coronary effluent, malondialdehyde (MDA), superoxide dismutase (SOD), and Ca2+-ATPase activity in the cardiac tissue were measured using commercial kits. The apoptotic cardiomyocyte was detected by terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay. Bax/Bcl-2 mRNA levels and the expression of caspase-3 were detected by RT-PCR and immunoblotting, respectively. Cultured newborn rat cardiomyocytes were pre-incubated with clenbuterol, and oxidative stress injury was induced by H2O2. Cell viability and cardiomyocyte apoptosis were evaluated by flow cytometry (FCM).
Results: In the isolated rat hearts after I/R injury, clenbuterol significantly improved diastolic function (LVEDP and CF) and Ca2+-ATPase activity. Treatment with clenbuterol increased SOD activity and decreased the MDA level and LDH release compared with the I/R group (P},
issn = {1745-7254}, url = {http://www.chinaphar.com/article/view/5092}
}