%0 Journal Article %T Cellular mechanism for spontaneous calcium oscillations in astrocytes %A Wang Tong-fei %A Zhou Chen %A Tang Ai-hui %A Wang Shi-qiang %A Chai Zhen %J Acta Pharmacologica Sinica %D 2016 %B 2016 %9 %! Cellular mechanism for spontaneous calcium oscillations in astrocytes %K %X Aim: To determine the Ca2+ source and cellular mechanisms of spontaneous Ca2+ oscillations in hippocampal astrocytes. Methods: The cultured cells were loaded with Fluo-4 AM, the indicator of intracellular Ca2+, and the dynamic Ca2+ transients were visualized with confocal laser-scanning microscopy. Results: The spontaneous Ca2+ oscillations in astrocytes were observed first in co-cultured hippocampal neurons and astrocytes. These oscillations were not affected by tetrodotoxin (TTX) treatment and kept up in purity cultured astrocytes. The spontaneous Ca2+ oscillations were not impacted after blocking the voltage-gated Ca2+ channels or ethylenediamine tetraacetic acid (EDTA) bathing, indicating that intracellular Ca2+ elevation was not the result of extracellular Ca2+ influx. Furthermore, the correlation between the spontaneous Ca2+ oscillations and the Ca2+ store in endoplasmic reticulum (ER) were investigated with pharmacological experiments. The oscillations were: 1) enhanced when cells were exposed to both low Na+ (70 mmol/L) and high Ca2+ (5 mmol/L) solution, and eliminated completely by 2 μmol/L thapsigargin, a blocker of sarcoplasmic reticulum Ca2+-ATPase; and 2) still robust after the application with either 50 mol/L ryanodine or 400 μmol/L tetracaine, two specific antagonists of ryanodine receptors, but depressed in a dose-dependent manner by 2-APB, an InsP3 receptors (InsP3R) blocker. Conclusion: InsP3R-induced ER Ca2+ release is an important cellular mechanism for the initiation of spontaneous Ca2+ oscillation in hippocampal astrocytes. %U http://www.chinaphar.com/article/view/4012 %V 27 %N 7 %P 861–868 %@ 1745-7254