How to cite item

Dipeptidyl peptidase 4 inhibitor sitagliptin protected against dextran sulfate sodium-induced experimental colitis by potentiating the action of GLP-2

  
@article{APS10224,
	author = {Meng-meng Ning and Wen-ji Yang and Wen-bo Guan and Yi-pei Gu and Ying Feng and Ying Leng},
	title = {Dipeptidyl peptidase 4 inhibitor sitagliptin protected against dextran sulfate sodium-induced experimental colitis by potentiating the action of GLP-2},
	journal = {Acta Pharmacologica Sinica},
	volume = {41},
	number = {11},
	year = {2020},
	keywords = {},
	abstract = {Dipeptidyl peptidase 4 (DPP4), a ubiquitously expressed protease that cleaves off the N-terminal dipeptide from proline and alanine on the penultimate position, has important roles in many physiological processes. In the present study, experimental colitis was induced in mice receiving 3% dextran sulfate sodium (DSS) in drinking water. We found that mice with DSS-induced colitis had significantly increased intestinal DPP activity and decreased serum DPP activity, suggesting a probable correlation of DPP4 with experimental colitis. Then, we investigated whether sitagliptin, a specific DPP4 inhibitor could protect against DSS-induced colitis. We showed that oral administration of single dose of sitagliptin (30 mg/kg) on D7 remarkably inhibited DPP enzyme activity in both serum and intestine of DSS-induced colitic mice. Repeated administration of sitagliptin (10, 30 mg/kg, bid, from D0 to D8) significantly ameliorated DSS-induced colitis, including reduction of disease activity index (DAI) and body weight loss, improvement of histological score and colon length. Sitagliptin administration dose-dependently increased plasma concentrations of active form of GLP-1 and colonic expression of GLP-2R. Co-administration of GLP-2R antagonist GLP-23-33 (500 μg/kg, bid, sc) abolished the protective effects of sitagliptin in DSS-induced colitic mice. Moreover, sitagliptin administration significantly decreased the ratio of apoptotic cells and increased the ratio of proliferative cells in colon epithelium of DSS-induced colitic mice, and this effect was also blocked by GLP-23-33. Taken together, our results demonstrate that sitagliptin could attenuate DSS-induced experimental colitis and the effects can be attributed to the enhancement of GLP-2 action and the subsequent protective effects on intestinal barrier by inhibiting epithelial cells apoptosis and promoting their proliferation. These findings suggest sitagliptin as a novel therapeutic approach for the treatment of ulcerative colitis.},
	issn = {1745-7254},	url = {http://www.chinaphar.com/article/view/10224}
}