Pretreatment with a combination of ligustrazine and berberine improves cardiac function in rats with coronary microembolization
Abstract
Aim: We have shown that a combination of ligustrazine and berberine produces more effective inhibition on platelet activation and inflammatory reactions in rat acute myocardial infarction compared with either agent alone. In this study we evaluated the beneficial effects of a combination of ligustrazine and berberine in a rat model of coronary microembolization (CME).
Methods: SD rats were treated with ligustrazine, berberine, ligustrazine+berberine, or clopidogrel for 2 weeks. When the treatment completed, CME was induced by injection of sodium laurate into the left ventricular, while obstructing the ascending aorta. All rats were intubated for hemodynamic measurements. Blood samples were collected for biochemical analyses, flow cytometry, and ELISAs. Heart tissues were isolated for histopathology and subsequent protein analyses.
Results: Pretreatment with the combination of ligustrazine (27 mg·kg-1·d-1) and berberine (90 mg·kg-1·d-1) significantly improved cardiac function, and decreased myocardial necrosis, inflammatory cell infiltration, microthrombosis and serum CK-MB levels in CME rats. In addition, this combination significantly decreased plasma ET-1 levels and von Willebrand factor, inhibited ADP-induced platelet activation, and reduced TNFα, IL-1β, ICAM-1 and RANTES levels in serum and heart tissues. The protective effects of this combination were more prominent than those of ligustrazine or berberine alone, but comparable to those of a positive control clopidogrel (6.75 mg·kg-1·d-1).
Conclusion: The combination of ligustrazine and berberine significantly improved cardiac function in rat CME model via a mechanism involving antiplatelet and anti-inflammatory effects.
Keywords:
coronary microembolization; ligustrazine; berberine; clopidogrel; cardioprotection; platelet activation; inflammatory reactions
Methods: SD rats were treated with ligustrazine, berberine, ligustrazine+berberine, or clopidogrel for 2 weeks. When the treatment completed, CME was induced by injection of sodium laurate into the left ventricular, while obstructing the ascending aorta. All rats were intubated for hemodynamic measurements. Blood samples were collected for biochemical analyses, flow cytometry, and ELISAs. Heart tissues were isolated for histopathology and subsequent protein analyses.
Results: Pretreatment with the combination of ligustrazine (27 mg·kg-1·d-1) and berberine (90 mg·kg-1·d-1) significantly improved cardiac function, and decreased myocardial necrosis, inflammatory cell infiltration, microthrombosis and serum CK-MB levels in CME rats. In addition, this combination significantly decreased plasma ET-1 levels and von Willebrand factor, inhibited ADP-induced platelet activation, and reduced TNFα, IL-1β, ICAM-1 and RANTES levels in serum and heart tissues. The protective effects of this combination were more prominent than those of ligustrazine or berberine alone, but comparable to those of a positive control clopidogrel (6.75 mg·kg-1·d-1).
Conclusion: The combination of ligustrazine and berberine significantly improved cardiac function in rat CME model via a mechanism involving antiplatelet and anti-inflammatory effects.