Molecular network-based analysis of Guizhi-Shaoyao-Zhimu decoction, a TCM herbal formula, for treatment of diabetic peripheral neuropathy
Abstract
Aim: Guizhi-Shaoyao-Zhimu decoction (GSZ), a traditional Chinese medicine (TCM) herbal formula, has been shown effective in the treatment of diabetic peripheral neuropathy (DPN). In this study, network analysis was performed to decipher the molecular mechanisms of GSZ in the treatment of DPN.
Methods: The chemical components of the 3 herbs forming GSZ, ie, Ramulus Cinnamomi (Guizhi), Paeonia lactiflora (Shaoyao) and Rhizoma Anemarrhenae (Zhimu), were searched in Chinese medicine dictionaries, and their target proteins were identified in PubChem. DPN genes were searched in PubMed gene databases. Ingenuity Pathway Analysis (IPA) was used to build the GSZ pharmacological network and DPN molecular network. The canonical pathways between the two networks were compared to decipher the molecular mechanisms of GSZ in the treatment of DPN.
Results: Sixty-one protein targets for Guizhi, 31 targets for Shaoyao, 47 targets for Zhimu, as well as 23 genes related to DPN were identified and uploaded to IPA. The primary functions of the DPN molecular network were inflammatory response, metabolic disease, cellular assembly and organization. As far as the pharmacological network functions were concerned, Guizhi target proteins were involved in neurological disease, inflammatory disease, cellular growth and proliferation, cell signaling, molecular transport, and nucleic acid metabolism, Shaoyao target proteins were related to neurological disease, inflammatory disease, and Zhimu target proteins focused on cell death and survival, cellular movement, immune cell trafficking, DNA replication, recombination and repair, and cell cycle. In the three-herb combination GSZ, several new network functions were revealed, including the inflammatory response, gene expression, connective tissue development and function, endocrine system disorders, and metabolic disease. The canonical pathway comparison showed that Shaoyao focused on IL-12 signaling and production in macrophages, and Zhimu focused on TNFR2 signaling, death receptor signaling, ILK signaling, IL-17A in gastric cells, IL-6 signaling, IL-8 signaling, the role of JAK1, JAK2, and TYK2 in interferon signaling, IL-9 signaling, HMGB1 signaling, NO production and ROS production in macrophages, whereas GSZ focused aryl hydrocarbon receptor signaling and apoptosis signaling in addition to those pathways induced by Guizhi, Shaoyao and Zhimu.
Conclusion: Although each single herb can affect some DPN-related functions and pathways, GSZ exerts more effects on DPN-related functions and pathways. The effects of GSZ on aryl hydrocarbon receptor signaling and apoptosis signaling pathways may be the key components of its total molecular mechanisms.
Keywords:
Guizhi-Shaoyao-Zhimu decoction; diabetic peripheral neuropathy; traditional Chinese medicine; Ramulus Cinnamomi; Paeonia lactiflora; Rhizoma Anemarrhenae; network pharmacology
Methods: The chemical components of the 3 herbs forming GSZ, ie, Ramulus Cinnamomi (Guizhi), Paeonia lactiflora (Shaoyao) and Rhizoma Anemarrhenae (Zhimu), were searched in Chinese medicine dictionaries, and their target proteins were identified in PubChem. DPN genes were searched in PubMed gene databases. Ingenuity Pathway Analysis (IPA) was used to build the GSZ pharmacological network and DPN molecular network. The canonical pathways between the two networks were compared to decipher the molecular mechanisms of GSZ in the treatment of DPN.
Results: Sixty-one protein targets for Guizhi, 31 targets for Shaoyao, 47 targets for Zhimu, as well as 23 genes related to DPN were identified and uploaded to IPA. The primary functions of the DPN molecular network were inflammatory response, metabolic disease, cellular assembly and organization. As far as the pharmacological network functions were concerned, Guizhi target proteins were involved in neurological disease, inflammatory disease, cellular growth and proliferation, cell signaling, molecular transport, and nucleic acid metabolism, Shaoyao target proteins were related to neurological disease, inflammatory disease, and Zhimu target proteins focused on cell death and survival, cellular movement, immune cell trafficking, DNA replication, recombination and repair, and cell cycle. In the three-herb combination GSZ, several new network functions were revealed, including the inflammatory response, gene expression, connective tissue development and function, endocrine system disorders, and metabolic disease. The canonical pathway comparison showed that Shaoyao focused on IL-12 signaling and production in macrophages, and Zhimu focused on TNFR2 signaling, death receptor signaling, ILK signaling, IL-17A in gastric cells, IL-6 signaling, IL-8 signaling, the role of JAK1, JAK2, and TYK2 in interferon signaling, IL-9 signaling, HMGB1 signaling, NO production and ROS production in macrophages, whereas GSZ focused aryl hydrocarbon receptor signaling and apoptosis signaling in addition to those pathways induced by Guizhi, Shaoyao and Zhimu.
Conclusion: Although each single herb can affect some DPN-related functions and pathways, GSZ exerts more effects on DPN-related functions and pathways. The effects of GSZ on aryl hydrocarbon receptor signaling and apoptosis signaling pathways may be the key components of its total molecular mechanisms.