The POR rs1057868–rs2868177 GC-GT diplotype is associated with high tacrolimus concentrations in early post-renal transplant recipients
Abstract
Aim: Cytochrome P450 oxidoreductase (POR) is the only flavoprotein that donates electrons to all microsomal P450 enzymes (CYP), and several POR SNPs have been shown to be important contributors to altered CYP activity or CYP-mediated drug metabolism. In this study we examined the association between 6 POR SNPs and tacrolimus concentrations in Chinese renal transplant recipients.
Methods: A total of 154 renal transplant recipients were enrolled. Genotyping of CYP3A5*3 and 6 POR SNPs was performed. All patients received a triple immunosuppressive regimen comprising tacrolimus, mycophenolate mofetil and prednisone. Dose-adjusted tacrolimus trough concentrations were obtained on d 7 (C0D7/D) after transplantation when steady-state concentration of tacrolimus was achieved (dosage had been unchanged for more than 3 d).
Results: Tacrolimus C0D7/D in CYP3A5*3/*3/ POR rs1057868–rs2868177 GC-GT diplotype carriers was 1.62- and 2.72-fold higher than those in CYP3A5*3/*3/ POR rs1057868–rs2868177 GC-GT diplotype non-carriers and CYP3A5*1 carriers (220.17±48.09 vs 135.69±6.86 and 80.84±5.27 ng/mL/mg/kg, respectively, P<0.0001). Of CYP3A5*3/*3/ POR rs1057868-rs2868177GC-GT diplotype carriers, 85.71% exceeded the upper limit of the target range (8 ng/mL), which was also significantly higher compared with the latter two groups (14.29% and 0.00%, respectively, P<0.0001). The CYP3A5*3 and POR rs1057868–rs2868177 GC-GT diplotype explained 31.7% and 5.7%, respectively, of the inter-individual variability of tacrolimus C0D7/D, whereas the POR rs1057868–rs2868177 GC-GT diplotype could explain 10.9% of the inter-individual variability of tacrolimus C0D7/D in CYP3A5 non-expressers.
Conclusion: The CYP3A5*3 and POR rs1057868–rs2868177 GC-GT diplotype accounted for the inter-individual variation of tacrolimus C0D7/D. Genotyping of POR rs1057868–rs2868177 diplotypes would help to differentiate initial tacrolimus dose requirements and to achieve early target C0 ranges in Chinese renal transplant recipients.
Keywords:
renal transplantion; tacrolimus; pharmacogenetics; POR; CYP3A5
Methods: A total of 154 renal transplant recipients were enrolled. Genotyping of CYP3A5*3 and 6 POR SNPs was performed. All patients received a triple immunosuppressive regimen comprising tacrolimus, mycophenolate mofetil and prednisone. Dose-adjusted tacrolimus trough concentrations were obtained on d 7 (C0D7/D) after transplantation when steady-state concentration of tacrolimus was achieved (dosage had been unchanged for more than 3 d).
Results: Tacrolimus C0D7/D in CYP3A5*3/*3/ POR rs1057868–rs2868177 GC-GT diplotype carriers was 1.62- and 2.72-fold higher than those in CYP3A5*3/*3/ POR rs1057868–rs2868177 GC-GT diplotype non-carriers and CYP3A5*1 carriers (220.17±48.09 vs 135.69±6.86 and 80.84±5.27 ng/mL/mg/kg, respectively, P<0.0001). Of CYP3A5*3/*3/ POR rs1057868-rs2868177GC-GT diplotype carriers, 85.71% exceeded the upper limit of the target range (8 ng/mL), which was also significantly higher compared with the latter two groups (14.29% and 0.00%, respectively, P<0.0001). The CYP3A5*3 and POR rs1057868–rs2868177 GC-GT diplotype explained 31.7% and 5.7%, respectively, of the inter-individual variability of tacrolimus C0D7/D, whereas the POR rs1057868–rs2868177 GC-GT diplotype could explain 10.9% of the inter-individual variability of tacrolimus C0D7/D in CYP3A5 non-expressers.
Conclusion: The CYP3A5*3 and POR rs1057868–rs2868177 GC-GT diplotype accounted for the inter-individual variation of tacrolimus C0D7/D. Genotyping of POR rs1057868–rs2868177 diplotypes would help to differentiate initial tacrolimus dose requirements and to achieve early target C0 ranges in Chinese renal transplant recipients.