Matrine inhibits production and actions of fibrogenic cytokines released by mouse peritoneal macrophages
Abstract
Aim: To study the effects of matrine (Mat) on production and actions of fibrogenic cytokines from mouse peritoneal macrophages.
Methods: Mouse peritoneal macrophages were primed with calcimycin 1 micromol/L for 8 h then elicited by lipopolysaccharides (LPS) 100 microg/L for 6 h to induce fibrogenic cytokines. Proliferative and collagen stimulating activity in the macrophage culture supernatants was determined by crystal violet staining assay and [3H]-proline incorporation assay using rat hepatic stellate HSC-T6 cell or mouse fibroblast NIH3T3 cell. Transforming growth factor beta (TGFbeta) activity was measured by [3H]-thymidine incorporation assay using Mv-1-Lu mink lung epithelial cell.
Results: Mat (0.5-2 mmol/L) was shown to significantly inhibit LPS-induced collagen stimulating activities and TGFbeta production (P < 0.01) whereas did not inhibit proliferative activities induced by macrophages. Macrophage conditioned medium (MCM)-driven proliferation and collagen synthesis of HSC-T6 cells as well as NIH3T3 cells were attenuated by Mat (0.5-2 mmol/L) in a concentration-dependent manner.
Conclusion: Antifibrotic effects of Mat on hepatic stellate cells may be related to reduction of fibrogenic cytokine production and blockade of their actions.
Keywords:
Methods: Mouse peritoneal macrophages were primed with calcimycin 1 micromol/L for 8 h then elicited by lipopolysaccharides (LPS) 100 microg/L for 6 h to induce fibrogenic cytokines. Proliferative and collagen stimulating activity in the macrophage culture supernatants was determined by crystal violet staining assay and [3H]-proline incorporation assay using rat hepatic stellate HSC-T6 cell or mouse fibroblast NIH3T3 cell. Transforming growth factor beta (TGFbeta) activity was measured by [3H]-thymidine incorporation assay using Mv-1-Lu mink lung epithelial cell.
Results: Mat (0.5-2 mmol/L) was shown to significantly inhibit LPS-induced collagen stimulating activities and TGFbeta production (P < 0.01) whereas did not inhibit proliferative activities induced by macrophages. Macrophage conditioned medium (MCM)-driven proliferation and collagen synthesis of HSC-T6 cells as well as NIH3T3 cells were attenuated by Mat (0.5-2 mmol/L) in a concentration-dependent manner.
Conclusion: Antifibrotic effects of Mat on hepatic stellate cells may be related to reduction of fibrogenic cytokine production and blockade of their actions.