Effect of N-acetylcysteine and L-NAME on aluminium phosphide induced cardiovascular toxicity in rats
Abstract
Aim: To investigate the protective effects of N-acetylcysteine (NAC) and Nomega-Nitro-L-arginine methyl ester (L-NAME) on aluminium phosphide (AlP) poisoning induced hemodynamic changes, myocardial oxygen free radical injury and on survival time in rats.
Methods: AlP (12.5 mg/kg) was administered intragastrically under urethane anaesthesia. The effect of pre- and post-treatment with NAC and L-NAME alone and in combination was studied on haemodynamic parameters [blood pressure (BP), heart rate (HR), and electrocardiogram (ECG)] and biochemical parameters (malonyldialdehyde, catalase, and glutathione peroxidase).
Results: AlP caused significant hypotension, tachycardia, ECG abnormalities, and finally marked bradycardia. The mean survival time was (90 +/- 10) min. There was significant increase in myocardial malonyldialdehyde (MDA), and decrease in catalase and glutathione peroxidase (GSH Px) levels. NAC infusion (6.25 mg . kg-1 . min-1, iv for 30 min) caused insignificant hemodynamic and biochemical changes. Pre- and post-treatment of NAC with AlP significantly increased the survival time, stabilized BP, HR, and ECG, decreased MDA and increased GSH Px levels compared to AlP group. L-NAME infusion (1 mg . kg-1 . min-1, iv for 60 min) as such caused significant rise in BP but precipitated ECG abnormalities. Pre- and post-treatment of L-NAME with AlP neither improved the survival time nor the biochemical parameters despite significant rise in BP. Co-administration of both the drugs with AlP worsened the hemodynamic and biochemical parameters with reduction in the survival time as compared to AlP.
Conclusion: NAC increased the survival time by reducing myocardial oxidative injury whereas L-NAME showed no such protective effects in rats exposed to AlP.
Keywords:
Methods: AlP (12.5 mg/kg) was administered intragastrically under urethane anaesthesia. The effect of pre- and post-treatment with NAC and L-NAME alone and in combination was studied on haemodynamic parameters [blood pressure (BP), heart rate (HR), and electrocardiogram (ECG)] and biochemical parameters (malonyldialdehyde, catalase, and glutathione peroxidase).
Results: AlP caused significant hypotension, tachycardia, ECG abnormalities, and finally marked bradycardia. The mean survival time was (90 +/- 10) min. There was significant increase in myocardial malonyldialdehyde (MDA), and decrease in catalase and glutathione peroxidase (GSH Px) levels. NAC infusion (6.25 mg . kg-1 . min-1, iv for 30 min) caused insignificant hemodynamic and biochemical changes. Pre- and post-treatment of NAC with AlP significantly increased the survival time, stabilized BP, HR, and ECG, decreased MDA and increased GSH Px levels compared to AlP group. L-NAME infusion (1 mg . kg-1 . min-1, iv for 60 min) as such caused significant rise in BP but precipitated ECG abnormalities. Pre- and post-treatment of L-NAME with AlP neither improved the survival time nor the biochemical parameters despite significant rise in BP. Co-administration of both the drugs with AlP worsened the hemodynamic and biochemical parameters with reduction in the survival time as compared to AlP.
Conclusion: NAC increased the survival time by reducing myocardial oxidative injury whereas L-NAME showed no such protective effects in rats exposed to AlP.