Original Article

Balsalazine decreases intestinal mucosal permeability of dextran sulfate sodium-induced colitis in mice

Xiao-chang Liu, Qiao Mei, Jian-ming Xu, Jing Hu
DOI: 10.1038/aps.2009.77

Abstract

Aim: To investigate the effect of balsalazine treatment on intestinal mucosal permeability in dextran sulfate sodium (DSS)-induced colitis and to determine the mechanism of the balsalazine-induced changes.
Methods: Experimental colitis was induced in C57BL/6J mice by the administration of 5% DSS. Balsalazine was administered intragastrically at doses of 42, 141, and 423 mg/kg. The disease activity index (DAI) score was evaluated and colon tissue was collected for the assessment of histological changes. The amount of malondialdehyde (MDA) in the colon was determined, along with the activity of myeloperoxidase (MPO), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Mucosa from the small intestine was collected to determine the levels of tumor necrosis factor (TNF)-α and interferon (IFN)-γ. The mucosa was ultrastructurally examined with transmission electron microscopy and intestinal permeability was assayed using Evans blue.
Results: Balsalazine was found to reduce the DAI score and the histological index (HI) score, decrease the MDA content and the activity of MPO, and increase the activity of SOD and GSH-Px in colitis mice. At the same time, balsalazine ameliorated microvillus and tight junction structure, resulting in a decrease in the amount of Evans blue permeating into the intestinal wall and the levels of TNF-α and IFN-γ in colitis mice.
Conclusion: In colitis mice, the anti-colitis effect of balsalazine results in a decrease in intestinal mucosal permeability. The mechanism of this effect is partly associated with balsalazine's antioxidative and anti-inflammatory effects.
Keywords:

Article Options

Download Citation

Cited times in Scopus