Efficacy of sequential treatment of HCT116 colon cancer monolayers and xenografts with docetaxel, flavopiridol, and 5-fluorouracil
Abstract
Aim: Clinical treatment of solid tumors with docetaxel, flavopiridol, or 5-fluorouracil (5-FU) often encounters undesirable side effects and drug resistance. This study aims to evaluate the potential role of combination therapy with docetaxel, flavopiridol, or 5-FU in modulating chemosensitivity and better understand how they might be used clinically.
Methods: HCT116 colon cancer cells were treated with docetaxel, flavopiridol, and 5-FU in several different administrative schedules in vitro, either sequentially or simultaneously. Cell survival was measured by MTT assay. The activity of caspase-3 was determined by caspase-3 assays and the soft agar colony assay was used to test the colony formation of HCT116 cells in soft agar. We also established xenograft models to extend in vitro observations to an in vivo system.
Results: The maximum cytotoxicity was found when human colon cancer HCT116 cells were treated with docetaxel for 1 h followed by flavopiridol for 24 h and 5-FU for another 24 h. This sequential combination therapy not only inhibits tumor cell growth more strongly compared to other combination therapies but also significantly reduces colony formation in soft agar and augments apoptosis of HCT116 cells. Sequencing of docetaxel followed 1 h later by flavopiridol, followed 24 h later by 5-FU in xenograft models, also resulted in delayed tumor growth and higher survival rate.
Conclusion: These results highlight the importance of an administrative schedule when combining docetaxel with flavopiridol and 5-FU, providing a rationale explanation for its development in clinical trials.
Keywords:
Methods: HCT116 colon cancer cells were treated with docetaxel, flavopiridol, and 5-FU in several different administrative schedules in vitro, either sequentially or simultaneously. Cell survival was measured by MTT assay. The activity of caspase-3 was determined by caspase-3 assays and the soft agar colony assay was used to test the colony formation of HCT116 cells in soft agar. We also established xenograft models to extend in vitro observations to an in vivo system.
Results: The maximum cytotoxicity was found when human colon cancer HCT116 cells were treated with docetaxel for 1 h followed by flavopiridol for 24 h and 5-FU for another 24 h. This sequential combination therapy not only inhibits tumor cell growth more strongly compared to other combination therapies but also significantly reduces colony formation in soft agar and augments apoptosis of HCT116 cells. Sequencing of docetaxel followed 1 h later by flavopiridol, followed 24 h later by 5-FU in xenograft models, also resulted in delayed tumor growth and higher survival rate.
Conclusion: These results highlight the importance of an administrative schedule when combining docetaxel with flavopiridol and 5-FU, providing a rationale explanation for its development in clinical trials.