Article

Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: potential involvement of PANoptosis

Jie Tong1, Xiu-ting Lan1, Zhen Zhang1, Yi Liu1, Di-yang Sun2, Xu-jie Wang1, Shen-xi Ou-Yang1, Chun-lin Zhuang2, Fu-ming Shen1, Pei Wang2, Dong-jie Li1,3
1 Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
2 School of Pharmacy, Naval Medical University/ Second Military Medical University, Shanghai 200433, China
3 Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai 200072, China
Correspondence to: Pei Wang: pwang@smmu.edu.cn, Dong-jie Li: djli@tongji.edu.cn,
DOI: 10.1038/s41401-022-01010-5
Received: 13 April 2022
Accepted: 25 September 2022
Advance online: 2 November 2022

Abstract

Ferroptosis is a new form of regulated cell death characterized by excessive iron accumulation and uncontrollable lipid peroxidation. The role of ferroptosis in metabolic dysfunction-associated fatty liver disease (MAFLD) is not fully elucidated. In this study we compared the therapeutic effects of ferroptosis inhibitor liproxstatin-1 (LPT1) and iron chelator deferiprone (DFP) in MAFLD mouse models. This model was established in mice by feeding a high-fat diet with 30% fructose in water (HFHF) for 16 weeks. The mice then received LPT1 (10 mg·kg−1·d−1, ip) or DFP (100 mg·kg−1·d−1, ig) for another 2 weeks. We showed that both LPT1 and DFP treatment blocked the ferroptosis markers ACSL4 and ALOX15 in MAFLD mice. Furthermore, LPT1 treatment significantly reduced the liver levels of triglycerides and cholesterol, lipid peroxidation markers 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA), and ameliorated the expression of lipid synthesis/oxidation genes (Pparα, Scd1, Fasn, Hmgcr and Cpt1a), insulin resistance, mitochondrial ROS content and liver fibrosis. Importantly, LPT1 treatment potently inhibited hepatic apoptosis (Bax/Bcl-xL ratio and TUNEL+ cell number), pyroptosis (cleavages of Caspase-1 and GSDMD) and necroptosis (phosphorylation of MLKL). Moreover, LPT1 treatment markedly inhibited cleavages of PANoptosis-related caspase-8 and caspase-6 in MAFLD mouse liver. In an in vitro MAFLD model, treatment with LPT1 (100 nM) prevented cultured hepatocyte against cell death induced by pro- PANoptosis molecules (TNF-α, LPS and nigericin) upon lipid stress. On the contrary, DFP treatment only mildly attenuated hepatic inflammation but failed to alleviate lipid deposition, insulin resistance, apoptosis, pyroptosis and necroptosis in MAFLD mice. We conclude that ferroptosis inhibitor LPT1 protects against steatosis and steatohepatitis in MAFLD mice, which may involve regulation of PANoptosis, a coordinated cell death pathway that involves apoptosis, pyroptosis and necroptosis. These results suggest a potential link between ferroptosis and PANoptosis.
Keywords: ferroptosis; PANoptosis; MAFLD; liver disease

Article Options

Download Citation

Cited times in Scopus