Oral administration of curcumin ameliorates pulmonary fibrosis in mice through 15d-PGJ2-mediated induction of hepatocyte growth factor in the colon
Abstract
Oral administration of curcumin has been shown to inhibit pulmonary fibrosis (PF) despite its extremely low bioavailability. In this study, we investigated the mechanisms underlying the anti-PF effect of curcumin in focus on intestinal endocrine. In bleomycin- and SiO2-treated mice, curcumin (75, 150 mg· kg−1 per day) exerted dose-dependent anti-PF effect when administered orally or rectally but not intravenously, implying an intestinal route was involved in the action of curcumin. We speculated that curcumin might promote the generation of gut-derived factors and the latter acted as a mediator subsequently entering the lungs to ameliorate fibrosis. We showed that oral administration of curcumin indeed significantly increased the expression of gut-derived hepatocyte growth factor (HGF) in colon tissues. Furthermore, in bleomycin-treated mice, the upregulated protein level of HGF in lungs by oral curcumin was highly correlated with its anti-PF effect, which was further confirmed by coadministration of c-Met inhibitor SU11274. Curcumin (5−40 μM) dose-dependently increased HGF expression in primary mouse fibroblasts, macrophages, CCD-18Co cells (fibroblast cell line), and RAW264.7 cells (monocyte–macrophage cell line), but not in primary colonic epithelial cells. In CCD-18Co cells and RAW264.7 cells, curcumin dose-dependently activated PPARγ and CREB, whereas PPARγ antagonist GW9662 (1 μM) or cAMP response element (CREB) inhibitor KG-501 (10 μM) significantly decreased the boosting effect of curcumin on HGF expression. Finally, we revealed that curcumin dose-dependently increased the production of 15-deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2) in CCD-18Co cells and RAW264.7 cells, which was a common upstream of the two transcription factors. Moreover, both the in vitro and in vivo effects of curcumin were diminished by coadministration of HPGDS-inhibitor-1, an inhibitor of 15d-PGJ2 generation. Together, curcumin promotes the expression of HGF in colonic fibroblasts and macrophages by activating PPARγ and CREB via an induction of 15d-PGJ2, and the HGF enters the lungs giving rise to an anti-PF effect.
Keywords:
curcumin; pulmonary fibrosis; colon; intestinal endocrine; hepatocyte growth factor; 15d-PGJ2